首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6283篇
  免费   1558篇
  国内免费   1629篇
测绘学   123篇
大气科学   3818篇
地球物理   1166篇
地质学   1593篇
海洋学   492篇
天文学   166篇
综合类   232篇
自然地理   1880篇
  2024年   12篇
  2023年   89篇
  2022年   210篇
  2021年   312篇
  2020年   315篇
  2019年   334篇
  2018年   297篇
  2017年   342篇
  2016年   344篇
  2015年   368篇
  2014年   468篇
  2013年   839篇
  2012年   472篇
  2011年   422篇
  2010年   398篇
  2009年   477篇
  2008年   496篇
  2007年   478篇
  2006年   413篇
  2005年   358篇
  2004年   306篇
  2003年   282篇
  2002年   255篇
  2001年   208篇
  2000年   182篇
  1999年   149篇
  1998年   143篇
  1997年   126篇
  1996年   93篇
  1995年   71篇
  1994年   56篇
  1993年   39篇
  1992年   34篇
  1991年   23篇
  1990年   16篇
  1989年   8篇
  1988年   12篇
  1987年   7篇
  1986年   9篇
  1985年   4篇
  1983年   3篇
排序方式: 共有9470条查询结果,搜索用时 22 毫秒
61.
ABSTRACT

Based on a future temperature increase of 0.5°C and precipitation decrease of 25%, the climate elasticity of streamflow to precipitation and temperature changes in 12 Andean watersheds of the Coquimbo Region, north-central Chile, was assessed. Also, the possible relationships between this elasticity and specific physiographic characteristics of the watersheds (area, average elevation, slope distribution, terrain roughness, slope orientation, vegetation cover) were studied. Climate elasticity of streamflow ranged between 0 and 2.8. Watersheds presenting higher elevations, with a fairly well-balanced distribution of slope exposure tend to exhibit lower elasticity, which could be explained by the contribution of snowfall to the hydrological regime, more significant in those watersheds. Results should be considered when downscaling climate model projections at the basin scale in mountain settings. Finally, uncertainties in the approach, given by factors such as streamflow seasonality, data availability and representativeness and watershed characteristics, and therefore the scope of the results, are discussed.  相似文献   
62.
Previous “fraction of young water” (Fyw) estimates based on relative annual isotopic amplitudes in precipitation (Ap) and streamflow (As) produced low Fyw values in mountain catchments, which is contrary to extensive research that reports rapid water transmission in mountains. This study investigated this discrepancy by testing the effect of snow accumulation on the model that underpins the Fyw method. A Monte-Carlo analysis of simulations for 20,000 randomly-generated catchment model configurations used 10 years of precipitation inputs for the Upper Elbow River catchment in the Rocky Mountains (Alberta, Canada) to model discharge with and without snowpack storage of winter precipitation. Neither direct nor modified precipitation input produced a 1:1 relationship between As/Ap and Fyw, undermining the applicability of the original Fyw method in mountain watersheds with large seasonal snow accumulation. With snowpack-modified input a given As/Ap ratio corresponds to a range of Fyw values, which can still provide semi-quantitative information. In the small (435 km2) Elbow River catchment a Fyw range of 7–23% supports previous findings of rapid transmission in mountain catchments. Further analysis showed that the improved discharge prediction (Nash–Sutcliffe efficiency > 0.9) correlates with higher Fyw values and demonstrated that the interannual shifts in δ18O can be used to estimate of new water (<1 year) fraction in winter streamflow, and the estimate of 20% for the Elbow River further supports rapid transmission in mountain catchments.  相似文献   
63.
Water resources in semi-arid regions like the Mediterranean Basin are highly vulnerable because of the high variability of weather systems. Additionally, climate change is altering the timing and pattern of water availability in a region where growing populations are placing extra demands on water supplies. Importantly, how reservoirs and dams have an influence on the amount of water resources available is poorly quantified. Therefore, we examine the impact of reservoirs on water resources together with the impact of climate change in a semi-arid Mediterranean catchment. We simulated the Susurluk basin (23.779-km2) using the Soil and Water Assessment Tool (SWAT) model. We generate results for with (RSV) and without reservoirs (WRSV) scenarios. We run simulations for current and future conditions using dynamically downscaled outputs of the MPI-ESM-MR general circulation model under two greenhouse gas relative concentration pathways (RCPs) in order to reveal the coupled effect of reservoir and climate impacts. Water resources were then converted to their usages – blue water (water in aquifers and rivers), green water storage (water in the soil) and green water flow (water losses by evaporation and transpiration). The results demonstrate that all water resources except green water flow are projected to decrease under all RCPs compared to the reference period, both long-term and at seasonal scales. However, while water scarcity is expected in the future, reservoir storage is shown to be adequate to overcome this problem. Nevertheless, reservoirs reduce the availability of water, particularly in soil moisture stores, which increases the potential for drought by reducing streamflow. Furthermore, reservoirs cause water losses through evaporation from their open surfaces. We conclude that pressures to protect society from economic damage by building reservoirs have a strong impact on the fluxes of watersheds. This is additional to the effect of climate change on water resources.  相似文献   
64.
The proto‐Paratethys Sea covered a vast area extending from the Mediterranean Tethys to the Tarim Basin in western China during Cretaceous and early Paleogene. Climate modelling and proxy studies suggest that Asian aridification has been governed by westerly moisture modulated by fluctuations of the proto‐Paratethys Sea. Transgressive and regressive episodes of the proto‐Paratethys Sea have been previously recognized but their timing, extent and depositional environments remain poorly constrained. This hampers understanding of their driving mechanisms (tectonic and/or eustatic) and their contribution to Asian aridification. Here, we present a new chronostratigraphic framework based on biostratigraphy and magnetostratigraphy as well as a detailed palaeoenvironmental analysis for the Paleogene proto‐Paratethys Sea incursions in the Tajik and Tarim basins. This enables us to identify the major drivers of marine fluctuations and their potential consequences on Asian aridification. A major regional restriction event, marked by the exceptionally thick (≤ 400 m) shelf evaporites is assigned a Danian‐Selandian age (ca. 63–59 Ma) in the Aertashi Formation. This is followed by the largest recorded proto‐Paratethys Sea incursion with a transgression estimated as early Thanetian (ca. 59–57 Ma) and a regression within the Ypresian (ca. 53–52 Ma), both within the Qimugen Formation. The transgression of the next incursion in the Kalatar and Wulagen formations is now constrained as early Lutetian (ca. 47–46 Ma), whereas its regression in the Bashibulake Formation is constrained as late Lutetian (ca. 41 Ma) and is associated with a drastic increase in both tectonic subsidence and basin infilling. The age of the final and least pronounced sea incursion restricted to the westernmost margin of the Tarim Basin is assigned as Bartonian–Priabonian (ca. 39.7–36.7 Ma). We interpret the long‐term westward retreat of the proto‐Paratethys Sea starting at ca. 41 Ma to be associated with far‐field tectonic effects of the Indo‐Asia collision and Pamir/Tibetan plateau uplift. Short‐term eustatic sea level transgressions are superimposed on this long‐term regression and seem coeval with the transgression events in the other northern Peri‐Tethyan sedimentary provinces for the 1st and 2nd sea incursions. However, the 3rd sea incursion is interpreted as related to tectonism. The transgressive and regressive intervals of the proto‐Paratethys Sea correlate well with the reported humid and arid phases, respectively in the Qaidam and Xining basins, thus demonstrating the role of the proto‐Paratethys Sea as an important moisture source for the Asian interior and its regression as a contributor to Asian aridification.  相似文献   
65.
作物生产潜力变化具有明显的区域差异性,亟需针对不同地理单元实施有效应对措施和调控策略。选择陕西省三大地理单元(陕北高原、关中盆地和秦巴山区)为研究对象,运用全球生态区模型(GAEZ)分析了陕西省不同地理单元作物生产潜力变化趋势,探讨了不同作物生产潜力变化的区域差异,辨识出影响不同作物生产潜力变化的主要因素,结果显示:(1) 1980—2015年间,陕西省玉米生产潜力总量增加了150.55×104 t,小麦生产潜力总量则下降了402.69×104 t。(2) 关中盆地的玉米和小麦生产潜力皆最大,陕北高原次之,秦巴山区的玉米和小麦生产潜力皆最小;陕北高原和秦巴山区的玉米生产潜力皆表现出先增加后减小再增加的变化趋势,关中盆地的玉米生产潜力则先减小后增加再减小;关中盆地和秦巴山区的小麦生产潜力都呈下降趋势,陕北高原的小麦生产潜力则有所提高。(3) 土地利用变化呈现减产效应,这一效应在关中盆地尤为显著,其次为陕北高原;气候变化导致玉米生产潜力增加,使小麦生产潜力下降;气候变化对不同地理单元的影响也不相同,在陕北高原表现为增产效应,在关中盆地和秦巴山区则为减产效应。(4) 在陕北高原,气候变化的增产效应是玉米和小麦生产潜力提高的主要原因,气候变化对玉米生产潜力的影响大于对小麦的影响,耕地向草地、林地和建设用地的转化是降低作物生产潜力最主要的土地利用变化因素;在关中盆地,作物生产潜力的变化主要是受气候变化的影响,小麦受气候变化的影响较玉米为大,以建设用地占用耕地为特征的土地利用变化对玉米生产潜力的影响大于对小麦的影响;在秦巴山区,土地利用变化是玉米生产潜力变化的主要原因,而小麦生产潜力的变化主要受气候变化影响。  相似文献   
66.
Ning  Like  Zhan  Chesheng  Luo  Yong  Wang  Yueling  Liu  Liangmeizi 《地理学报(英文版)》2019,29(3):465-479
Journal of Geographical Sciences - The terrestrial hydrological process is an essential but weak link in global/regional climate models. In this paper, the development status, research hotspots and...  相似文献   
67.
The response of the eastern tropical Indian Ocean(ETIO) to heat fluxes of equal amplitude but opposite sign is investigated using the Community Earth System Model(CESM). A significant positive asymmetry in sea surface temperature(SST) is found over the ETIO—the warming responses to the positive forcing exceeds the cooling to the negative forcing. A mixed layer heat budget analysis is carried out to identify the mechanisms responsible for the SST asymmetry. Results show that it is mainly ascribed to the ocean dynamical processes, including vertical advections and diffusion. The net surface heat flux, on the contrary, works to reduce the asymmetry through its shortwave radiation and latent heat flux components. The former is due to the nonlinear relationship between SST and cloud, while the latter is resulted mainly from Newtonian damping and air-sea stability effects. Changes in the SST skewness are also evaluated, with more enhanced negative SST skewness over the ETIO found for the cooling than heating scenarios due to the asymmetric thermocline-SST feedback.  相似文献   
68.
The purpose of this study is to estimate long-term SMC and find its relation with soil moisture (SM) of climate station in different depths and NDVI for the growing season. The study area is located in agricultural regions in the North of Mongolia. The Pearson’s correlation methodology was used in this study. We used MODIS and SPOT satellite data and 14 years data for precipitation, temperature and SMC of 38 climate stations. The estimated SMC from this methodology were compared with SM from climate data and NDVI. The estimated SMC was compared with SM of climate stations at a 10-cm depth (r2 = 0.58) and at a 50-cm depth (r2 = 0.38), respectively. From the analysis, it can be seen that the previous month’s SMC affects vegetation growth of the following month, especially from May to August. The methodology can be an advantageous indicator for taking further environmental analysis in the region.  相似文献   
69.
Snowmelt makes an essential component of the hydrological system of Kashmir Himalayas. The present study was carried out to examine the status of Snow Cover Area (SCA) using Moderate Resolution Imaging Spectroradiometer (MODIS) 8-day Snow Cover Product between 2000 and 2016. The intra- and inter-annual variability in SCA and in meteorological parameters was observed and various statistical tests were used to study the interrelationship. Results of statistical analysis indicate decrease in maximum temperature (?0.05 °C/year) and minimum temperatures (?0.02 °C/year) while rise in precipitation (19.13 mm/year). It also showed an increase in annual mean SCA (43.5 sq km) during the study period. The analysis was also carried out on a seasonal basis. The results revealed that in Kashmir Himalayas, climate plays a dominating role in controlling the SCA. The results depict the short-term fluctuations in SCA and show the magnitude of change between two successive values being very large in SCA.  相似文献   
70.
Satellite images have been used historically to measure and monitor fluctuations in the surface water reservoirs. This study integrates remote sensing and Geographic Information System (GIS) technologies to investigate the impact of drought on 10 selected surface water reservoirs in San Angelo and Dallas, Texas. Oscillations in summer and winter months throughout the 2005–2016 period were assessed using multispectral images from Landsat-5, ?7, and ?8, and changes in the reservoirs were characterized and correlated against local climate data of each reservoir. For quantitative comparisons of the time-series measurements, a robust density slicing approach was employed to classify the range of values of the raster cells in the near-infrared band of Landsat images for each lake into three desired classes (deep water, shallow water, and dry area) based on the natural breaks inherent in the dataset. Statistical analysis shows that the overall accuracy of the classification is about 94%, which demonstrates the efficiency of the density slicer to accurately estimate surface water area changes from an individual Landsat band. Shrinkage in the surface water area over the study period reveals the concrete impact that the drought along with other factors have on the 10 selected lakes. The San Angelo lakes located in west central Texas experienced a nearly consistent pattern of change during most of the study period; whereas the Dallas lakes in northeast Texas followed the oscillating pattern of drought and correlated closely to the local conditions. Shockingly, the extreme drought caused complete vanishing of several lakes, and consequently Texas had to remove them from its recreational plans. Our new findings can certainly help with the water resource management in Texas and our study approach can be adapted for monitoring lake oscillations in other areas across the world. This geospatial study demonstrates the societal benefits from incorporating remote sensing and GIS in investigating geo-environmental problems associated with severe climate changes.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号